First name:

Last name:

Student ID number:

Statistical Modelling Exam 27/06/2024

Exercise 1

Assume that y_1, \ldots, y_{200} are realizations of independent Gaussian random variables with variance equal to 1 and and mean $\beta_1 + \beta_2 \exp\{z_i\}$ for $i = 1, ..., 120$, and mean $\beta_1 + \beta_3 \exp\{z_i^2\}$ for $i = 121, \ldots, 200$; where the z_i are known constants and $(\beta_1, \beta_2, \beta_3)$ are unknown real parameters.

- a) Are the assumptions of a Gaussian linear model satisfied in the above formulation? Motivate the answer.
- b) State the parameter space and sample space.
- c) Express the model in matrix form: $\underline{Y} = X\beta + \varepsilon$, explicitly stating how \underline{Y} , X , β , and $\underline{\varepsilon}$ are defined and their dimensions. Write the distribution of \underline{Y} and $\underline{\varepsilon}$.
- d) Obtain the expression of the matrix $X^T X$ and the vector $X^T y$; state how these elements should be used to obtain the maximum likelihood estimate $\hat{\beta}$.
- e) Write the distribution of the maximum likelihood estimator $\hat{\beta}(\underline{Y})$.
- f) Let $\underline{e} = y X\hat{\beta}$ be the vector of the residuals. State which of the following identities are satisfied and motivate the answer:

$$
\sum_{i=1}^{200} e_i = 0 \qquad \sum_{i=1}^{200} e_i z_i = 0 \qquad \sum_{i=1}^{200} e_i z_i^2 = 0
$$

$$
\sum_{i=1}^{200} e_i \exp\{z_i\} = 0 \qquad \sum_{i=1}^{200} e_i \exp\{z_i^2\} = 0 \qquad \sum_{i=1}^{120} e_i \exp\{z_i\} = 0
$$

(hint: read the indices in the sum!)

Exercise 2

The data contained in the chdage dataset represent the measurements on 100 patients of two variables: the age expressed in years (AGE) and a binary variable (CHD) which assumes value 1 if the individual has a coronary heart disease and 0 otherwise.

a) To investigate whether there is a relationship between the probability of having a coronary heard disease and the age of the individuals, a researcher fitted a generalized linear model (using the canonical link function) that produced the following output:

- a1) Write the statistical model corresponding to such output (assumptions and model specification).
- a2) Write the interpretation of the coefficient associated with the age variable.
- a3) Write the system of hypotheses and perform a test to compare the fitted model with a model that includes only the intercept. Comment the result.
- b) The researcher then wonders whether the age might have a quadratic effect and adds the corresponding covariate to the model. The fitted model produced the following output:

- b1) Write the statistical model corresponding to such output.
- b2) Complete the missing values in the table.
- b3) Write the system of hypotheses and perform a test to compare the fitted model with a model that includes only the intercept. Comment the result.
- b4) Write the system of hypotheses and perform a test to evaluate which model is preferable between model (a) and (b). Comment the result.
- c) To further investigate the relationship between the age and the presence of heart disease, the age variable was then transformed into a dummy variable. Specifically, the new variable age<50 takes value 1 if age is smaller than 50 and 0 otherwise. With this new variable, the following output is produced when fitting the model:

c1) Write the statistical model corresponding to such output.

c2) Write the interpretation of the slope coefficient.

					\boldsymbol{p}			
		0.90	0.95	0.975	0.99	0.995	0.9975	0.999
standard Normal	z_p	1.2816	1.6449	1.9600	2.3263	2.5758	2.8070	3.0902
χ^2 with 1 df	$\chi^2_{1,p}\atop \chi^2_{2,p}$	2.7055	3.8415	5.0239	6.6349	7.8794	9.1406	10.8276
χ^2 with 2 df		4.6052	5.9915	7.3778	9.2103	10.5966	11.9829	13.8155
χ^2 with 3 df	$\chi_{3,p}^{2}$	6.2514	7.8147	9.3484	11.3449	12.8382	14.3203	16.2662
χ^2 with 4 df	$\chi^{2}_{4,p}$	7.7794	9.4877	11.1433	13.2767	14.8603	16.4239	18.4668
χ^2 with 5 df	$\chi_{5,p}^2$	9.2364	11.0705	12.8325	15.0863	16.7496	18.3856	20.5150

Table 1: Some quantiles of Gaussian, and χ^2 distribution: $p = \mathbb{P}(X \le q_p)$. Columns correspond to probabilities p. Rows correspond to different distributions, in particular, for the χ^2 , each row corresponds to different degrees of freedom (df).