Exercises: Multiple Linear Regression Part I

Luca Danese - l.danese1@campus.unimib.it

November 5, 2024

(Thanks to Dr. Roberto Ascari and Valentina Zangirolami for providing these exercises)

1 Exercise 1

Among 100 elementary school children, data about daily time spent in front of the TV (TV variable), gender (G variable) and time spent answering to a logic-mathematics question (T variable) were collected.

Exercise 1.1

Specify an appropriate regression model for the response variable T.

Exercise 1.2

The model specified at ex 1.1 provides the following values: SST = 985, $R^2 = 0.51$, $S.E.(\hat{B}_2) = 0.9$, $S.E.(\hat{B}_3) = 2.3$, where \hat{B}_2 and \hat{B}_3 are the maximum-likelihood estimators of the regression coefficients for TV variable and G variable, and $\hat{\rho}_{(\hat{B}_2,\hat{B}_3)} = 0.68$.

Perform a statistical test to check the goodness of fit of our model by employing the p-value (specify also the null hypothesis).

Exercise 1.3

Identify all the elements of the matrix $(X^TX)^{-1}$ which can be computed within the available data (specified in the above exercises).

2 Exercise 2

Among 100 households in northern Italy, the variables Y = monthly expenditures for foods (in hundreds of euros), $X_1 = \text{monthly household income (in hundreds of euros)}$, $X_2 = \text{number of household members}$, and $X_3 = \text{type of diet (divided in "vegetarian"}$, "vegan" and "other") were collected.

Exercise 2.1

Specify a multiple linear regression model for the response variable Y.

Exercise 2.2

Let $c_{j,h}$ be the elements of the matrix $(X^TX)^{-1}$, where $c_{2,2} = 0.02$, $c_{3,3} = 0.07$, $c_{2,3} =$

-0.02. Let also consider that $\hat{\beta}_2 = 0.5, \ \hat{\beta}_3 = 0.8$ and SSE = 300.

Evaluate the significance of β_2 and try to interpret the value of $\hat{\beta}_2$.

Exercise 2.3

Find the probability distribution of $\hat{\beta}_2 - \hat{\beta}_3$ and build a statistical test based on the null hypothesis $H0: \beta_2 = \beta_3$ (at 1% significance level).

Exercise 2.4

Knowing SSE = 282 for a model which includes an interaction between the dummy variable (referred to the type "vegeterian") and X_1 , decide the best model through an appropriate test (specify hypothesis, test statistic and p-value).

3 Exercise 3

To assess the verbal skills of 33 children, a test was conducted by collecting: the final score, the number of books read monthly by each child, and the number of books read monthly by their parents.

Exercise 3.1

Choose an appropriate response variable together with an appropriate linear regression model. Then, specify the related assumptions and the dimension of the design matrix X.

Exercise 3.2

Complete the following table and provide an interpretation of the estimates of the significant regression coefficients.

	Estimates	S.E.	t-value	p-value
X_1	1.5	0.44		
X_2		0.22		0.01

Exercise 3.3

Knowing the SST is equal to 2980 and $R^2 = 0.59$, decide if one of the two below options are compatible with the previous data (considering that the below options are based on a regression model with just one independent variable X_1):

- SSR = 1800 and SSE = 1180
- SSR = 1500 and SSE = 1500

Justify your answer.

4 Exercise 4

Considering 84 business company in northern Italy, we estimated the following regression model

$$\hat{y} = 12.7 + 9.3x_1 + 1.9x_2 - 1.6x_3$$

where Y = monthly turnover (in thousands), $X_1 =$ sector (1 = manufacturing, 0 = trade), $X_2 =$ number of employees, and $X_3 =$ decrease in investment advertising compared to the previous year (in hundreds of euros). Further, SSE = 2308 and $R^2 = 0.62$.

Exercise 4.1

Interpret the estimate of β_2 ($\hat{\beta}_2 = 9.3$).

Exercise 4.2

Complete the table below and show the formula we should use.

	Estimates	S.E.	t-value	p-value
X_3				0.02

Exercise 4.3

Evaluate the goodness of fit through a valid test (thus, using the p-value).